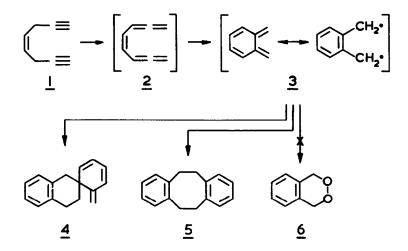
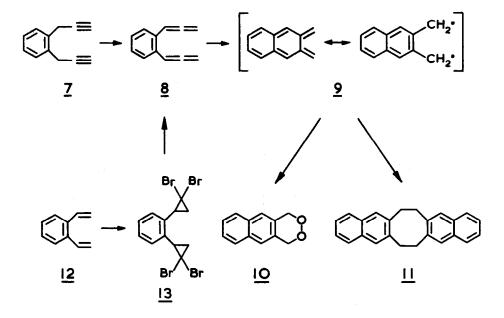
o-DIPROPADIENYLBENZENE AND 2,3-DIPROPADIENYLNAPHTHALENE. THE OXIDATION


OF DIALLENES TO CYCLIC PEROXIDES WITH TRIPLET OXYGEN 1

C.M. Bowes, D.F. Montecalvo and F. Sondheimer²

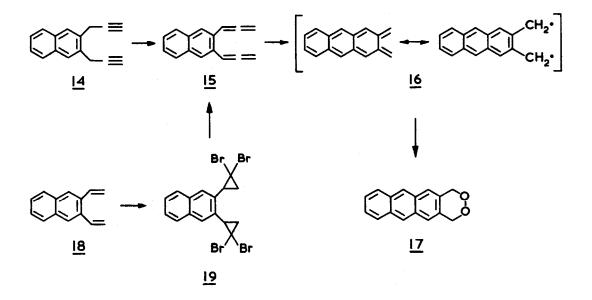
Chemistry Department, University College, Gordon Street, London WClH OAJ

(Received in UK 26 June 1973; accepted for publication 6 July 1973)

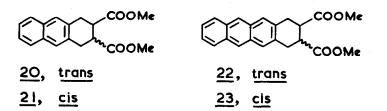

Several years ago it was reported by our group 3 that treatment of <u>cis</u>-4-octene-1,7-diyne (<u>1</u>) with KOBu^t led to the dimers <u>4</u> (25%) and <u>5</u> (2%), presumably via the diallene <u>2</u>

and <u>o</u>-quinodimethane (<u>3</u>). We have now found that the analogous reactions of <u>o</u>-dipropargylbenzene (<u>7</u>) and 2,3-dipropargylnaphthalene (<u>14</u>) rather surprisingly give rise to the cyclic peroxides <u>10</u> and <u>17</u>, respectively, in addition to more usual products. These transformations have been shown to involve the diallenes <u>8</u> and <u>15</u> as intermediates, which are oxidized with triplet oxygen to <u>10</u> and <u>17</u>, presumably via 2,3-naphthoquinodimethane (<u>9</u>) and 2,3-anthraquinodimethane (<u>16</u>).

<u>o</u>-Dipropargylbenzene (<u>7</u>) (mp 38-38.5°) ⁴ was obtained in 35% yield by the reaction of α, α' -diiodo-<u>o</u>-xylene with an excess of ethynylmagnesium bromide in THF in the presence of CuCl and NaI. Treatment of <u>7</u> in THF with KOBu^t in HOBu^t at -78°, followed by warming to -10°, ⁵ shaking for 30 seconds, isolation with ether, and chromatography on SiO₂, gave the following new naphthalene derivatives:⁶ (a) the peroxide <u>10</u> (25%), mp 166-167°; <u>m/e</u> 186; λ_{\max} (EtOH) 225 nm (ϵ 104,000), 253sh (2100), 261 (3200), 270 (4500), 280 (4800), 291 (3100), 306 (370), 319 (190); NMR (CDCl₃): τ 2.1 - 2.7 (6H, m, aromatic), 4.60 (4H, s, CH₂); (b) the dimer <u>11</u> (8%), mp 296-297°; (c) an isomeric mixture of naphthalenic "complex dimers" (47%). The structure of <u>10</u> was confirmed by reduction with LiAlH₄ to 2,3-bis-


(hydroxymethyl)naphthalene, mp 159-160°, identical with an authentic sample.⁷ The structure of <u>11</u> was confirmed through an independent synthesis (in <u>ca</u> 1% yield) from 2,3-bis(bromomethyl)naphthalene ⁷ and zinc in DMF at room temperature.⁸

The formation of 10, 11 and the "complex dimers" (total yield, 80%) from 7 was presumed to involve 8 and 9 as intermediates. Proof that o-dipropadienylbenzene (8) is indeed an intermediate in the reaction of 7 with KOBu^t was provided by rapid ether extraction, evaporation ($<20^{\circ}$), and layer chromatography on SiO₂. This led to 8 (>80% pure) as an unstable oil; m/e 154 (40°, 40 eV); λ_{max} (MeOH) 264 nm; IR (neat): 1930 (s) cm⁻¹; NMR (CCl₄): <2.4 - 3.0 (4H, m, aromatic), 3.61 (2H, t, J = 7Hz, -CH=), 4.96 (4H, d, J = 7Hz, CH₂=). The diallene 8 was converted fairly rapidly into the above described naphthalenes on standing in solution, and this transformation could be followed readily from the typical UV spectral change (\pm 16 min, in MeOH at 30°). The diallene 8, showing identical properties, could also be prepared from o-divinylbenzene (12) by reaction with an excess of dibromocarbene (generated from CHBr₃, 50% aqueous NaOH, and triethylbenzylammonium chloride), ¹⁰ followed by treatment of diastereomeric diadducts <u>13</u> [mp 152-153° (18%);¹⁰,11 mp 73-75° (9%)] with LiMe in ether at -35°.


That atmospheric triplet oxygen was responsible for the oxidation of the diallene $\underline{8}$ to the peroxide $\underline{10}^{12}$ was shown by the facts that the yield of $\underline{10}$ was decreased from 25% to 10% when attempts were made to exclude oxygen in the reaction of $\underline{7}$ with KOBu^t, was increased to 42% when oxygen was bubbled through the mixture, and these yields were essentially unchanged when the reactions were carried out in the dark. When crude $\underline{8}$ (from $\underline{7}$) was extracted with oxygen saturated ether, and oxygen was then bubbled into the dilute ether solution for 3 hours, the peroxide $\underline{10}$ was obtained in 78% yield (based on $\underline{7}$).

2,3-Dipropargylnaphthalene (<u>14</u>) (mp 90.5 - 91.5°) was obtained in 30% yield from 2,3bis(iodomethyl)naphthalene [from 2,3-bis(bromomethyl)naphthalene ⁷ and NaI in acetone], as described for <u>7</u>. Treatment of <u>14</u> with KOBu^t in HOBu^t at -78°, followed by warming to -15°, shaking for 30 seconds, and isolation as described for <u>8</u>, gave 48% of <u>15</u> as needles, mp 75-77°; <u>m/e</u> 204 (35°, 70 eV); λ_{max} (MeOE) 257 nm (<u>6 ca</u> 60,000); IR (KBr): 1930(s) cm⁻¹; NMR (CDCl₃): γ 2.1 - 2.8 (6H, m, aromatic), 3.44 (2H, t, <u>J</u> = 7Hz, -CH=), 4.83 (4H, d, <u>J</u> = 7Hz, CH₂=). The diallene <u>15</u> was transformed to anthracenic products on standing, a change which could again be monitored simply by UV spectroscopy (<u>t</u> <u>14</u> = 100 min, in MeOH at 30°). The same diallene <u>15</u> was obtained in <u>ca</u> 10% yield from 2,3-divinylnaphthalene (<u>18</u>) via the bis(dibromocarbene) adducts <u>19</u> [mp 226-228° (12%); mp 143-145° (1¹%)], as described for the synthesis of <u>8</u> from <u>12</u>.

Leaving a solution of 15 in oxygen saturated MeOH for 3 days at room temperature (with or without exclusion of light) resulted in 97% of the peroxide 17¹³ as yellow plates, mp 228-231°; m/e 236; λ_{max} (MeOH) 250sh nm (ε 82,000), 256 (162,000), 327 (2300), 344 (4300), 362 (5100), 382 (4300); NNR (CDCl₃, 65°): Υ 1.65 - 2.7 (8H, m, aromatic), 4.58 (4H, s, CH₂). The structure was confirmed by reduction with LiAlH₄ to 2,3-bis(hydroxymethyl)-anthracene, mp 267-269°, identical with an authentic sample. The peroxide 17 was originally obtained directly from 14 by treatment with KCBu^t, preferably by bubbling in oxygen (51% yield). It is of interest that all attempts similarly to prepare the peroxide 6 from 1 were unsuccessful.

Corroborative evidence for the intermediates $\underline{9}$ and $\underline{16}$ was provided by trapping experiments. The diallene $\underline{8}$ (from $\underline{7}$) in ether with dimethyl fumarate and dimethyl maleate at room temperature gave $\underline{20}$ (72% based on $\underline{7}$; mp 123-124°) and $\underline{21}$ (43% based on $\underline{7}$; mp 116-118°),

respectively. Similarly <u>15</u> (from <u>14</u>) with these esters yielded <u>22</u> (68% based on <u>14</u>; mp 218-220°) and <u>23</u> (35% based on <u>14</u>; mp 183-185°), respectively. Each of these reactions was at least 95% stereospecific. Further experiments are in progress to investigate the nature of 9 and 16, ¹⁴ a subject which we propose to discuss subsequently.

REFERENCES AND NOTES

- 1. For details of this work, see C.M. Bowes, Ph.D. thesis, University of London, 1973.
- 2. To whom inquiries should be addressed.
- 3. D.A. Ben-Efraim and F. Sondheimer, Tetrahedron Letters 313 (1963).
- 4. UV, IR, NMR and mass spectra, compatible with the assigned structures, were obtained for all new compounds.
- 5. Above -10°, appreciable quantities of <u>o</u>-propadienylpropynylbenzene and <u>o</u>-dipropynylbenzene were obtained.
- Related conversions of o-dipropargylbenzene derivatives to naphthalene derivatives (naphtho[b]cyclolutenes) via diallenes have been describ d [M.P. Cava, B. Hwang and J.P. van Meter, J. Amer. Chem. Soc. 85, 4031 (1963); H.A. Staab and B. Draeger, <u>Chem. Ber. 105</u>, 2320 (1972)], although the presumed diallene intermediates were not isolated.
- 7. W. Ried and H. Bodem, Chem. Ber. 89, 708 (1956), and references quoted there.
- 8. See K. Alder and M. Fremery, Tetrahedron, 14, 190 (1961).
- 2,3-Naphthoquinodimethane (<u>9</u>) has been postulated as an intermediate in the formation and pyrolysis of naphtho[b]cyclobutene [M.P. Cava and R.L. Shirley, J. Amer. Chem. Soc. <u>82</u>, 654 (1960); M.P. Cava, R.L. Shirley and B.W. Erickson, <u>J. Org. Chem. 27</u>, 755 (1962)].
- See L. Skattebøl, G.A. Abskharoun and T. Greibrokk, <u>Tetrahedron Letters</u> 1367 (1973), and references quoted there.
- 11. L. Skattebøl, J. Org. Chem. 29, 2951 (1964).
- For other examples of peroxide formation with triplet oxygen, see R. Criegee, <u>Angew. Chem. 74</u>, 703 (1962); D.H.R. Barton, G. Leclerc, P.D. Magnus and I.D. Menzies, <u>J. Chem. Soc. Chem. Comm. 447</u> (1972).
- 13. When attempts were made to exclude oxygen, insoluble anthracenic dimers, in addition to $\underline{17}$, were obtained.
- For recent SCF molecular orbital calculations of <u>9</u> and <u>16</u>, see G.J. Gleicher, D.D. Newkirk and J.C. Arnold, <u>J. Amer. Chem. Soc</u>. <u>95</u>, 2526 (1973).